
Verified Reversible Programming for
Verified Lossless Compression

James Townsend and Jan-Willem van de Meent
University of Amsterdam

Abstract

Lossless compression implementations typically contain two programs, an encoder and a
decoder, which are required to be inverse to one another. We observe that a significant class
of compression methods, based on asymmetric numeral systems (ANS), have shared structure
between the encoder and decoder—the decoder program is the ‘reverse’ of the encoder
program—allowing both to be simultaneously specified by a single, reversible function. To
exploit this, we have implemented a small reversible language, embedded in Agda, which we
call ‘Flipper’ (available at github.com/j-towns/flipper). Agda supports formal verification
of program properties, and the compiler for our reversible language (which is implemented
as an Agda macro), produces not just an encoder/decoder pair of functions but also a proof
that they are inverse to one another. Thus users of the language get formal verification ‘for
free’. We give a small example use-case of Flipper in this paper, and plan to publish a full
compression implementation soon.

It has been known since the work of Claude Shannon in the late 1940s that there is a deep
connection between probabilistic modelling and lossless data compression. In [12], Shannon
showed that the best achievable compressed size for random data is equal to the expected
negative log-probability, a quantity which he called the ‘entropy’. Practical approaches to lossless
compression work by assuming a model P over input data x, and compressing x to a size close
to the negative log-probability − log2 P (x), using a coding method such as Huffman coding
[4], arithmetic coding [9], or asymmetric numeral systems (ANS) [2]. Recently, a number of
papers have shown that modern deep generative models can be used to achieve state-of-the-art
compression rates [14, 7, 15, 3, 1, 11, 17, 6]. These recent works all use ANS, a method which, due
to its simplicity and superior performance, has also become ubiquitous in production compression
systems.1

Our work on this paper began with an observation: in ANS-based methods, the encoder and
decoder programs appear to have the same structure. Indeed, we realised that it made sense to
view them as different interpretations of the same program, one ‘doing’ the program and the
other ‘undoing’ it. Following this idea to its logical conclusion, we have implemented a small,
reversible domain specific language, called Flipper, embedded in Agda [10], via an Agda macro.
The potential advantages of using Flipper are significant—the amount of user code is reduced,
and accidental violation of the inverse property (a common cause of bugs in lossless compression)
is no longer possible.

1A list is maintained at encode.su/threads/2078-List-of-Asymmetric-Numeral-Systems-implementations, which
includes various ANS programs with state-of-the-art performance.

1

https://github.com/j-towns/flipper
https://encode.su/threads/2078-List-of-Asymmetric-Numeral-Systems-implementations

Flipper programs inhabit a record type of bijections between two sets A and B :2

record _↔_ (A B : Set) : Set where
field

apply : A → B
unapply : B → A
prfa : ∀ a → unapply (apply a) ≡ a
prfb : ∀ b → apply (unapply b) ≡ b

The Flipper macro takes a user implementation of apply in A → B , and compiles it into an
inhabitant of A ↔ B , complete with an implementation of unapply and the two necessary
correctness proofs.

The compiler only accepts functions expressed in an ‘obviously’ reversible form, where the
reverse interpretation can be seen by literally rotating the source code by 180◦ (more detail on
this below). Despite this restriction on form, we have found Flipper to be a surprisingly effective
language for implementing lossless compression, and surprisingly enjoyable to use.

There is a tradition of ‘reversible’ programming languages going back at least as far as [8],
and we took particular inspiration from the pure functional reversible languages rFun [16, 13] and
Theseus [5]. We believe that Flipper is the first in this tradition to support dependent types, and
as far as we know the first to be formally verified. We also think that embedding the reversible
language in a well established host language, with excellent editor integration, makes writing
software in Flipper significantly easier than existing reversible languages. The power of these
features is demonstrated by our implementation of ANS-based compression in Flipper, which
to our knowledge is the most sophisticated compression method to have been implemented in a
reversible language to date (we plan to publicly release this soon).

1 The Flipper language
The Flipper compiler accepts an apply : A → B , expressed as a pattern-matching lambda term
with a special property: rotating the term by 180◦, and “re-righting” any upside down symbols,
results in a valid term in B → A, which we can use as our unapply.

As a first example, consider the ‘flippable’ function which swaps the elements of a pair:

pair-swp : ∀ {A B} → A × B ↔ B × A
pair-swp = F λ { (a , b) → (b , a) }

Here the Flipper compiler, F, is applied to a lambda term. Flipping that term gives

λ{(a,b)→(b,a)} .

Rerighting symbols (including the _,_ constructor/pattern) and moving the λ over to the left,
we see that in this case

unapply = λ { (b , a) → (a , b) }.

Note that, in order for the rotated unapply to be a valid Agda function, it is necessary that
each bound variable in a flippable must be used exactly once. To emphasize the view of apply
and unapply as different interpretations (or orientations) of the same program, from here on we
will use a more concise, symmetrical syntax for flippable definitions:

2We would have preferred the names ‘do’ and ‘undo’ to ‘apply’ and ‘unapply’, but unfortunately ‘do’ is a
reserved keyword in Agda.

2

x variables
c Agda constructors
T Agda terms
p ::= x | (c [p]) patterns
f ::= F { bs } | T flippables
bs ::= b | b ; bs branches
b ::= p ↔ B
B ::= p | p1 ⟨ f ⟩ p2 ↔ B

Figure 1: Grammar of the Flipper language. The notation [p] stands for a list of zero or more patterns.
Note that infix Agda constructors, such as _,_, are also allowed in patterns.

pair-swp’ : A × B ↔ B × A
pair-swp’ = F { (a , b) ↔ (b , a) }

New flippables can be built from existing ones: the syntax a ⟨ f ⟩ b ↔ T is interpreted in
apply as “apply the flippable f to the variable a and bind the result to b in T ”, equivalent to the
expression let b = apply f a in T . We can, for example, compose two flippables as follows:

: (A ↔ B) → (B ↔ C) → A ↔ C
f # g = F { a ↔ a ⟨ f ⟩ b ↔

b ⟨ g ⟩ c ↔ c }

To allow for conditional branching, flippable expressions can contain multiple clauses, cor-
responding to distinct input/output patterns. For example, the following flippable swaps the
branches of a sum type:

sum-swp : Either A B ↔ Either B A
sum-swp = F { (left a) ↔ (right a)

; (right b) ↔ (left b)
}

In order for a pattern lambda with multiple clauses to be flippable, the body expressions on the
right hand side must partition the output type: each possible constructor must appear exactly
once.

Finally, between being bound and being used, variable names are considered ‘in scope’, and
can be freely referred to inside ⟨ . . . ⟩ (this doesn’t count as a ‘use’), an example is the way that
a is referred to in the flippable uncurry combinator:

uncurry : (A → B ↔ C) → A × B ↔ A × C
uncurry f = F { (a , b) ↔ b ⟨ f a ⟩ c ↔ (a , c) }

2 Bits back coding in Flipper
As a brief example use case, we show how to implement the ‘bits-back with ANS’ (BB-ANS)
method from [14] in Flipper. This is not an implementation of ANS itself, but a method for
composing ANS-based codecs in order to encode data using a latent variable model.

We assume a model over data x where we only have access to the joint distribution P (x, z)
for some ‘latent’ variable z, and an approximate posterior Q(z |x), but not to the marginal

P (x) =

∫
z

P (x, z) dz. (1)

3

z x

Figure 2: Graphical model with latent variable z and observed variable x.

We define a flippable Encoder type, parameterized by a compressed message type, C , and the
type X of data to be compressed:

Encoder : Set → Set → Set
Encoder C X = C × X ↔ C

The apply function of an Encoder accepts some compressed data in C and a symbol in X and
returns a new element of C from which the original compressed data and the symbol can both be
recovered. An Encoder can be used to compress a list of elements of X , by (flippably) folding
over the list.

The BB-ANS method can be expressed in Flipper as:

bb-ans : (PZ : Encoder C Z)
(PX |Z : Z → Encoder C X)
(QZ |X : X → Encoder C Z)
→ Encoder C X

bb-ans PZ PX |Z QZ |X = F { (c , x) ↔ c ⟨ flip (QZ |X x) ⟩ (c , z) ↔
(c , x) ⟨ PX |Z z ⟩ c ↔
(c , z) ⟨ PZ ⟩ c ↔ c }

This matches the Python implementation presented in [14, Appendix C], but with only one
function required instead of two.

3 Conclusion
We have presented the Flipper language, for which we have implemented a compiler as an Agda
macro. Flipper can be used to reduce the amount of code, and to avoid a class of bugs, when
implementing lossless compression programs. We hope to release Flipper, as well as the full ANS
compression implementation in Flipper, as soon as possible.

4

Acknowledgements
Thanks to Wouter Swierstra and Heiko Zimmerman for their advice and feedback on drafts of
this paper. This publication is part of the project “neural networks for efficient storage and
communication of information” (with project number VI.Veni.212.106) of the research programme
“NWO-Talentprogramma Veni ENW 2021” which is financed by the Dutch Research Council
(NWO).

References
[1] Rianne van den Berg, Alexey A. Gritsenko, Mostafa Dehghani, Casper Kaae Sønderby,

and Tim Salimans. IDF++: Analyzing and Improving Integer Discrete Flows for Lossless
Compression. In International Conference on Learning Representations (ICLR). 2021.

[2] Jarek Duda. Asymmetric Numeral Systems. 2009. arXiv: 0902.0271 [cs, math].

[3] Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and Max Welling. Integer Discrete
Flows and Lossless Compression. In Advances in Neural Information Processing Systems
32. 2019, pp. 12134–12144.

[4] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. In
Proceedings of the IRE 40.9 (1952), pp. 1098–1101.

[5] Roshan James and Amr Sabry. Theseus: A High Level Language for Reversible Computing.
In Conference on Reversible Computation (RC). Work in progress report. 2014.

[6] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models.
In Advances in Neural Information Processing Systems. Vol. 34. 2021, pp. 21696–21707.

[7] Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-Swap: Recursive Bits-Back Coding
for Lossless Compression with Hierarchical Latent Variables. In Proceedings of the 36th
International Conference on Machine Learning. 2019, pp. 3408–3417.

[8] Christopher Lutz. Janus: A Time-Reversible Language. Letter to R. Landauer. 1986.

[9] Alistair Moffat, Radford M. Neal, and Ian H. Witten. Arithmetic Coding Revisited. In
ACM Transactions on Information Systems (TOIS) 16.3 (1998), pp. 256–294.

[10] Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory.
Department of Computer Science and Engineering, Chalmers University of Technology,
2007.

[11] Yangjun Ruan, Karen Ullrich, Daniel S. Severo, James Townsend, Ashish Khisti, Arnaud
Doucet, Alireza Makhzani, and Chris Maddison. Improving Lossless Compression Rates
via Monte Carlo Bits-Back Coding. In Proceedings of the 38th International Conference on
Machine Learning. 2021, pp. 9136–9147.

[12] Claude. E. Shannon. A Mathematical Theory of Communication. In The Bell System
Technical Journal 27.3 (1948), pp. 379–423.

[13] Michael K. Thomsen and Holger B. Axelsen. Interpretation and Programming of the
Reversible Functional Language RFUN. In Proceedings of the 27th Symposium on the
Implementation and Application of Functional Programming Languages. IFL ’15. New York,
NY, USA, 2015, pp. 1–13.

5

https://arxiv.org/abs/0902.0271

[14] James Townsend, Thomas Bird, and David Barber. Practical Lossless Compression with
Latent Variables Using Bits Back Coding. In International Conference on Learning Repre-
sentations (ICLR). 2019.

[15] James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: Lossless Image
Compression with Hierarchical Latent Variable Models. In International Conference on
Learning Representations (ICLR). 2020.

[16] Tetsuo Yokoyama, Holger B. Axelsen, and Robert Glück. Towards a Reversible Func-
tional Language. In Reversible Computation. Lecture Notes in Computer Science. Berlin,
Heidelberg, 2012, pp. 14–29.

[17] Mingtian Zhang, Andi Zhang, and Steven McDonagh. On the Out-of-distribution General-
ization of Probabilistic Image Modelling. In Advances in Neural Information Processing
Systems. Vol. 34. 2021, pp. 3811–3823.

6

	The Flipper language
	Bits back coding in Flipper
	Conclusion

