Differentiating the qr decomposition

James Townsend

December 17, 2018

The QR decomposition of an $m \times n$ matrix A (with $m \ge n$) is defined by

$$A = QR \tag{1}$$

where Q is an $m\times n$ matrix with orthonormal columns, and R is an $n\times n$ upper triangular matrix.

The orthonormality of the columns of Q implies that

$$Q^{+}Q = I. \tag{2}$$

Differentiating this leads to

$$dQ^{\top}Q + Q^{\top}dQ = 0 \tag{3}$$

which implies that the matrix $dQ^{\top}Q$ is skew-symmetric. By counting parameters, it can be shown that dQ can be uniquely decomposed into two terms:

$$dQ = Qd\Omega + Q_{\perp}dK \tag{4}$$

where Q_{\perp} is an $m \times (m-n)$ matrix such that $\begin{bmatrix} Q & Q_{\perp} \end{bmatrix}$ is an orthogonal matrix (this could be computed using the Gram-Schmidt process), $d\Omega$ is $n \times n$ skew-symmetric and dK is an unconstrained $(m-n) \times n$ matrix.

The derivative of R is also constrained. Since R is upper triangular dR must also be upper triangular.

Differentiating equation 1 gives

$$dA = dQR + QdR. \tag{5}$$

Substituting the expression for dQ from (4) into this equation gives

$$dA = [Qd\Omega + Q_{\perp}dK]R + QdR \tag{6}$$

$$= Q \left[d\Omega R + dR \right] + Q_{\perp} dKR.$$
⁽⁷⁾

Left multiply this expression by Q^{\top} , and right multiply by R^{-1} . This gives

$$Q^{\top} dA R^{-1} = d\Omega + dR R^{-1} \tag{8}$$

The right hand side of this expression is the sum of a skew-symmetric matrix $(d\Omega)$ and an upper triangular one (dRR^{-1}) , thus each term is uniquely determined by the left hand side.

determined by the left hand side. To find dK, multiply (7) by Q_{\perp}^{\top} on the left and R^{-1} on the right leading to

$$dK = Q_{\perp}^{\dagger} dAR^{-1}.$$
(9)