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1 The low rank case

Let A be an m × n matrix of rank k ≤ min(m,n). Then we may decompose A as
A = USV>, where U is m× k, S is k× k diagonal, V is n× k and the matrices U and
V satisfy the relation

U>U = V>V = Ik. (1)

In this case the differential of A may be expressed as

dA = dUSV> + UdSV> + USdV>. (2)

The constraint (1) implies that the diffentials dU and dV are also constrained: focussing
on U for a moment, taking the differential of (1) gives

dU>U + U>dU = 0. (3)

So the matrix dΩU = U>dU is skew-symmetric. In fact, if we fix an m × (m − k)
matrix U⊥ such that

[
U U⊥

]
is an orthogonal matrix (this could be computed using

the Gram-Schmidt process) then we may expand dU as

dU = UdΩU + U⊥dKU (4)

where dKU is an unconstrained (m− k)× k matrix. Similarly we may expand dV as

dV = VdΩV + V⊥dKV (5)

where dΩV = V>dV is k × k skew-symmetric and dKV is an (n − k) × k matrix. See
[1] for more detail. Left-multiplying (2) by U> and right-multiplying by V gives

U>dAV = dΩUS + dS + SdΩ>V. (6)

Since dΩU and dΩV are skew-symmetric, they have zero diagonal and thus the products
dΩUS and and SdΩ>V must also have zero diagonal. This means that we can split (6)
into two components as follows. Letting dP := U>dAV and using ◦ to denote the
Hadamard product, the diagonal component of (6) is

dS = Ik ◦ dP (7)
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and the off diagonal
Īk ◦ dP = dΩUS− SdΩV (8)

where Īk denotes the k × k matrix with zero diagonal and ones everywhere else.
Taking the transpose of (8) yields

Īk ◦ dP> = −SdΩU + dΩVS. (9)

Now right multiply (8) by S, left multiply (9) by S and add. This gives

Īk ◦
[
dPS + SdP>

]
= dΩUS2 − S2dΩU, (10)

which is solved by

dΩU = F ◦
[
dPS + SdP>

]
(11)

where Fij =

{
1

s2j−s2i
i 6= j

0 i = j
. By a similar process,

dΩV = F ◦
[
SdP + dP>S

]
. (12)

Finally, to find dKU, we left multiply (2) by U>⊥, which yields

U>⊥dA = dKUSV> (13)

which implies that
dKU = U>⊥dAVS−1. (14)

By a similar line of reasoning,

dKV = V>⊥dA>US−1. (15)

All of this derivation can now be combined into formulae for the differentials dU, dS and
dV in terms of dA, U, S and V. We use the identity U⊥U

>
⊥ = I −UU> to eliminate

U⊥ and V⊥.

dU = U
(
F ◦

[
U>dAVS + SV>dA>U

])
+
(
Im −UU>

)
dAVS−1 (16)

dS = Ik ◦
[
U>dAV

]
(17)

dV = V
(
F ◦

[
SU>dAV + V>dA>US

])
+
(
In −VV>

)
dA>US−1 (18)

2



1.1 Reverse mode AD updates

Suppose we have an objective function f(x) whose gradient we wish to calculate. Use
the shorthand ·̄ = ∇·f to denote the grad of f with respect to ·, so the gradient we are
looking for is x. Suppose that at some stage during the computation of f , we take a a
matrix A(x) and compute its svd U(x)S(x)V(x)>

We may write

df = tr(U
>

dU) + tr(S
>

dS) + tr(V
>

dV). (19)

To get the reverse mode AD update, we need to use the formulae (16), (17) and (18),

and massage the right hand side into the form tr(A
>

dA), then A will be what we need

for the update. Let us look first at the term tr(S
>

dS). Using (17), this can be written
as

tr(S
>

dS) = tr
(
S
>
(
Ik ◦

[
U>dAV

]))
(20)

= tr
(
U>dAV

(
Ik ◦ S

))
(21)

= tr
(
V
(
Ik ◦ S

)
U>dA

)
(22)

using formula 65 of [2]. The expansion of tr(U
>

dU) is a little longer. . .

tr(U
>

dU) = tr
(
U
>
[
U
(
F ◦

[
U>dAVS + SV>dA>U

])
+
(
Im −UU>

)
dAVS−1

])
.

(23)
The right hand side is a sum of two terms. Again using formula 65 of [2] and the fact
that F> = −F, the first term is

tr
(
U
>
U
(
F ◦

[
U>dAVS + SV>dA>U

]))
= tr

([
U>dAVS + SV>dA>U

] (
F ◦U>U

))
(24)

= tr
(
VS

(
F ◦U>U

)
U>dA−VS

(
F ◦U>U

)
U>dA

)
(25)

= tr
(
VS

(
F ◦

[
U>U−U

>
U
])

U>dA
)

(26)

The second term is more straightforward to deal with

tr
(
U
>
(
Im −UU>

)
dAVS−1

)
= tr

(
VS−1U

>
(
Im −UU>

)
dA
)

(27)

and therefore

tr(U
>

dU) = tr
(
V
[
S
(
F ◦

[
U>U−U

>
U
])

U> + S−1U
>
(
Im −UU>

)]
dA
)
. (28)

A similar derivation leads to

tr(V
>

dV) = tr
([

V
(
F ◦

[
V>V −V

>
V
])

S +
(
Im −VV>

)
VS−1

]
U>dA

)
. (29)
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Putting all of this together leads to the update equation

A =
[
U
(
F ◦

[
U>U−U

>
U
])

S +
(
Im −UU>

)
US−1

]
V>+ (30)

U
(
Ik ◦ S

)
V> + U

[
S
(
F ◦

[
V>V −V

>
V
])

V> + S−1V
>
(
In −VV>

)]
(31)

by taking the transposes of the expressions above and noting that the matrices F ◦[
U>U−U

>
U
]

and F ◦
[
V>V −V

>
V
]

are symmetric.
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