Differentiating the Singular Value Decomposition

James Townsend

August 10, 2016

1 The low rank case

Let \mathbf{A} be an $m \times n$ matrix of $\operatorname{rank} k \leq \min (m, n)$. Then we may decompose \mathbf{A} as $\mathbf{A}=\mathbf{U S V}^{\top}$, where \mathbf{U} is $m \times k, \mathbf{S}$ is $k \times k$ diagonal, \mathbf{V} is $n \times k$ and the matrices \mathbf{U} and V satisfy the relation

$$
\begin{equation*}
\mathbf{U}^{\top} \mathbf{U}=\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}_{k} . \tag{1}
\end{equation*}
$$

In this case the differential of \mathbf{A} may be expressed as

$$
\begin{equation*}
\mathrm{d} \mathbf{A}=\mathrm{d} \mathbf{U S} \mathbf{V}^{\top}+\mathbf{U d} \mathbf{S} \mathbf{V}^{\top}+\mathbf{U} \mathbf{S} \mathrm{d} \mathbf{V}^{\top} . \tag{2}
\end{equation*}
$$

The constraint (1) implies that the diffentials $d \mathbf{U}$ and $d \mathbf{V}$ are also constrained: focussing on \mathbf{U} for a moment, taking the differential of (1) gives

$$
\begin{equation*}
\mathrm{d} \mathbf{U}^{\top} \mathbf{U}+\mathbf{U}^{\top} \mathrm{d} \mathbf{U}=\mathbf{0} . \tag{3}
\end{equation*}
$$

So the matrix $\mathrm{d} \Omega_{\mathbf{U}}=\mathbf{U}^{\top} \mathrm{d} \mathbf{U}$ is skew-symmetric. In fact, if we fix an $m \times(m-k)$ matrix \mathbf{U}_{\perp} such that $\left[\begin{array}{ll}\mathbf{U} & \mathbf{U}_{\perp}\end{array}\right]$ is an orthogonal matrix (this could be computed using the Gram-Schmidt process) then we may expand dU as

$$
\begin{equation*}
\mathrm{d} \mathbf{U}=\mathbf{U} \mathrm{d} \Omega_{\mathbf{U}}+\mathbf{U}_{\perp} \mathrm{d} \mathbf{K}_{\mathbf{U}} \tag{4}
\end{equation*}
$$

where $\mathrm{d} \mathbf{K}_{\mathbf{U}}$ is an unconstrained $(m-k) \times k$ matrix. Similarly we may expand $\mathrm{d} \mathbf{V}$ as

$$
\begin{equation*}
\mathrm{d} \mathbf{V}=\mathbf{V} d \Omega_{\mathbf{V}}+\mathbf{V}_{\perp} \mathrm{d} \mathbf{K}_{\mathbf{V}} \tag{5}
\end{equation*}
$$

where $\mathrm{d} \Omega_{\mathbf{V}}=\mathbf{V}^{\top} \mathrm{d} \mathbf{V}$ is $k \times k$ skew-symmetric and $\mathrm{d} \mathbf{K}_{\mathbf{V}}$ is an $(n-k) \times k$ matrix. See (1) for more detail. Left-multiplying (2) by \mathbf{U}^{\top} and right-multiplying by \mathbf{V} gives

$$
\begin{equation*}
\mathbf{U}^{\top} \mathrm{d} \mathbf{A V}=\mathrm{d} \Omega_{\mathbf{U}} \mathbf{S}+\mathrm{d} \mathbf{S}+\mathbf{S} \mathrm{d} \Omega_{\mathbf{V}}^{\top} . \tag{6}
\end{equation*}
$$

Since $\mathrm{d} \Omega_{\mathbf{U}}$ and $\mathrm{d} \Omega_{\mathbf{V}}$ are skew-symmetric, they have zero diagonal and thus the products $\mathrm{d} \Omega_{\mathbf{U}} \mathbf{S}$ and and $\mathbf{S d} \Omega_{\mathrm{V}}^{\top}$ must also have zero diagonal. This means that we can split (6) into two components as follows. Letting $\mathrm{d} \mathbf{P}:=\mathbf{U}^{\top} \mathrm{d} \mathbf{A V}$ and using \circ to denote the Hadamard product, the diagonal component of (6) is

$$
\begin{equation*}
\mathrm{d} \mathbf{S}=\mathbf{I}_{k} \circ \mathrm{~d} \mathbf{P} \tag{7}
\end{equation*}
$$

and the off diagonal

$$
\begin{equation*}
\overline{\mathbf{I}}_{k} \circ \mathrm{~d} \mathbf{P}=\mathrm{d} \Omega_{\mathbf{U}} \mathbf{S}-\mathbf{S} \mathrm{d} \Omega_{\mathbf{V}} \tag{8}
\end{equation*}
$$

where $\overline{\mathbf{I}}_{k}$ denotes the $k \times k$ matrix with zero diagonal and ones everywhere else.
Taking the transpose of (8) yields

$$
\begin{equation*}
\overline{\mathbf{I}}_{k} \circ \mathrm{~d} \mathbf{P}^{\top}=-\mathbf{S} \mathrm{d} \Omega_{\mathbf{U}}+\mathrm{d} \Omega_{\mathbf{V}} \mathbf{S} \tag{9}
\end{equation*}
$$

Now right multiply (8) by \mathbf{S}, left multiply (9) by \mathbf{S} and add. This gives

$$
\begin{equation*}
\overline{\mathbf{I}}_{k} \circ\left[\mathrm{~d} \mathbf{P S}+\mathbf{S} \mathrm{d} \mathbf{P}^{\top}\right]=\mathrm{d} \Omega_{\mathbf{U}} \mathbf{S}^{2}-\mathbf{S}^{2} \mathrm{~d} \Omega_{\mathbf{U}} \tag{10}
\end{equation*}
$$

which is solved by

$$
\begin{equation*}
\mathrm{d} \Omega_{\mathbf{U}}=\mathbf{F} \circ\left[\mathrm{d} \mathbf{P S}+\mathbf{S} \mathrm{d} \mathbf{P}^{\top}\right] \tag{11}
\end{equation*}
$$

where $\mathbf{F}_{i j}=\left\{\begin{array}{ll}\frac{1}{s_{j}^{2}-s_{i}^{2}} & i \neq j \\ 0 & i=j\end{array}\right.$. By a similar process,

$$
\begin{equation*}
\mathrm{d} \Omega_{\mathbf{V}}=\mathbf{F} \circ\left[\mathbf{S} \mathrm{d} \mathbf{P}+\mathrm{d} \mathbf{P}^{\top} \mathbf{S}\right] . \tag{12}
\end{equation*}
$$

Finally, to find $d \mathbf{K}_{\mathbf{U}}$, we left multiply (2) by $\mathbf{U}_{\perp}^{\top}$, which yields

$$
\begin{equation*}
\mathbf{U}_{\perp}^{\top} \mathrm{d} \mathbf{A}=\mathrm{d} \mathbf{K}_{\mathbf{U}} \mathbf{S} \mathbf{V}^{\top} \tag{13}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\mathrm{d} \mathbf{K}_{\mathbf{U}}=\mathbf{U}_{\perp}^{\top} \mathrm{d} \mathbf{A V S}{ }^{-1} . \tag{14}
\end{equation*}
$$

By a similar line of reasoning,

$$
\begin{equation*}
\mathrm{d} \mathbf{K}_{\mathbf{V}}=\mathbf{V}_{\perp}^{\top} \mathrm{d} \mathbf{A}^{\top} \mathbf{U S}^{-1} . \tag{15}
\end{equation*}
$$

All of this derivation can now be combined into formulae for the differentials $\mathrm{d} \mathbf{U}, \mathrm{d} \mathbf{S}$ and $\mathrm{d} \mathbf{V}$ in terms of $\mathrm{d} \mathbf{A}, \mathbf{U}, \mathbf{S}$ and \mathbf{V}. We use the identity $\mathbf{U}_{\perp} \mathbf{U}_{\perp}^{\top}=\mathbf{I}-\mathbf{U} \mathbf{U}^{\top}$ to eliminate \mathbf{U}_{\perp} and \mathbf{V}_{\perp}.

$$
\begin{align*}
\mathrm{d} \mathbf{U} & =\mathbf{U}\left(\mathbf{F} \circ\left[\mathbf{U}^{\top} \mathrm{d} \mathbf{A V S}+\mathbf{S V}^{\top} \mathrm{d} \mathbf{A}^{\top} \mathbf{U}\right]\right)+\left(\mathbf{I}_{m}-\mathbf{U U}^{\top}\right) \mathrm{d} \mathbf{A V} \mathbf{S}^{-1} \tag{16}\\
\mathrm{~d} \mathbf{S} & =\mathbf{I}_{k} \circ\left[\mathbf{U}^{\top} \mathrm{d} \mathbf{A V}\right] \tag{17}\\
\mathrm{d} \mathbf{V} & =\mathbf{V}\left(\mathbf{F} \circ\left[\mathbf{S U}^{\top} \mathrm{d} \mathbf{A V}+\mathbf{V}^{\top} \mathrm{d} \mathbf{A}^{\top} \mathbf{U S}\right]\right)+\left(\mathbf{I}_{n}-\mathbf{V} \mathbf{V}^{\top}\right) \mathrm{d} \mathbf{A}^{\top} \mathbf{U} \mathbf{S}^{-1} \tag{18}
\end{align*}
$$

1.1 Reverse mode AD updates

Suppose we have an objective function $f(\mathbf{x})$ whose gradient we wish to calculate. Use the shorthand ${ }^{-}=\nabla . f$ to denote the grad of f with respect to \cdot, so the gradient we are looking for is $\overline{\mathbf{x}}$. Suppose that at some stage during the computation of f, we take a a matrix $\mathbf{A}(\mathbf{x})$ and compute its $\operatorname{svd} \mathbf{U}(\mathbf{x}) \mathbf{S}(\mathbf{x}) \mathbf{V}(\mathbf{x})^{\top}$

We may write

$$
\begin{equation*}
\mathrm{d} f=\operatorname{tr}\left(\overline{\mathbf{U}}^{\top} \mathrm{d} \mathbf{U}\right)+\operatorname{tr}\left(\overline{\mathbf{S}}^{\top} \mathrm{d} \mathbf{S}\right)+\operatorname{tr}\left(\overline{\mathbf{V}}^{\top} \mathrm{d} \mathbf{V}\right) \tag{19}
\end{equation*}
$$

To get the reverse mode AD update, we need to use the formulae 16,17 and (18), and massage the right hand side into the form $\operatorname{tr}\left(\overline{\mathbf{A}}^{\top} \mathrm{d} \mathbf{A}\right)$, then $\overline{\mathbf{A}}$ will be what we need for the update. Let us look first at the term $\operatorname{tr}\left(\overline{\mathbf{S}}^{\top} \mathrm{d} \mathbf{S}\right)$. Using (17), this can be written as

$$
\begin{align*}
\operatorname{tr}\left(\overline{\mathbf{S}}^{\top} \mathrm{d} \mathbf{S}\right) & =\operatorname{tr}\left(\overline{\mathbf{S}}^{\top}\left(\mathbf{I}_{k} \circ\left[\mathbf{U}^{\top} \mathrm{d} \mathbf{A V}\right]\right)\right) \tag{20}\\
& =\operatorname{tr}\left(\mathbf{U}^{\top} \mathrm{d} \mathbf{A} \mathbf{V}\left(\mathbf{I}_{k} \circ \overline{\mathbf{S}}\right)\right) \tag{21}\\
& =\operatorname{tr}\left(\mathbf{V}\left(\mathbf{I}_{k} \circ \overline{\mathbf{S}}\right) \mathbf{U}^{\top} \mathrm{d} \mathbf{A}\right) \tag{22}
\end{align*}
$$

using formula 65 of [2]. The expansion of $\operatorname{tr}\left(\overline{\mathbf{U}}^{\top} \mathrm{d} \mathbf{U}\right)$ is a little longer...

$$
\begin{equation*}
\operatorname{tr}\left(\overline{\mathbf{U}}^{\top} \mathrm{d} \mathbf{U}\right)=\operatorname{tr}\left(\overline{\mathbf{U}}^{\top}\left[\mathbf{U}\left(\mathbf{F} \circ\left[\mathbf{U}^{\top} \mathrm{d} \mathbf{A} \mathbf{V} \mathbf{S}+\mathbf{S} \mathbf{V}^{\top} \mathrm{d} \mathbf{A}^{\top} \mathbf{U}\right]\right)+\left(\mathbf{I}_{m}-\mathbf{U}^{\top}\right) \mathrm{d} \mathbf{A} \mathbf{V} \mathbf{S}^{-1}\right]\right) \tag{23}
\end{equation*}
$$

The right hand side is a sum of two terms. Again using formula 65 of [2] and the fact that $\mathbf{F}^{\top}=-\mathbf{F}$, the first term is

$$
\begin{align*}
& \operatorname{tr}\left(\overline{\mathbf{U}}^{\top} \mathbf{U}\left(\mathbf{F} \circ\left[\mathbf{U}^{\top} \mathrm{d} \mathbf{A} \mathbf{V} \mathbf{S}+\mathbf{S} \mathbf{V}^{\top} \mathrm{d} \mathbf{A}^{\top} \mathbf{U}\right]\right)\right)=\operatorname{tr}\left(\left[\mathbf{U}^{\top} \mathrm{d} \mathbf{A} \mathbf{V S}+\mathbf{S V}^{\top} \mathrm{d} \mathbf{A}^{\top} \mathbf{U}\right]\left(\mathbf{F} \circ \mathbf{U}^{\top} \overline{\mathbf{U}}\right)\right) \tag{24}\\
&=\operatorname{tr}\left(\mathbf{V S}\left(\mathbf{F} \circ \mathbf{U}^{\top} \overline{\mathbf{U}}\right) \mathbf{U}^{\top} \mathrm{d} \mathbf{A}-\mathbf{V S}\left(\mathbf{F} \circ \overline{\mathbf{U}}^{\top} \mathbf{U}\right) \mathbf{U}^{\top} \mathrm{d} \mathbf{A}\right) \tag{25}\\
&=\operatorname{tr}\left(\mathbf{V S}\left(\mathbf{F} \circ\left[\mathbf{U}^{\top} \overline{\mathbf{U}}-\overline{\mathbf{U}}^{\top} \mathbf{U}\right]\right) \mathbf{U}^{\top} \mathrm{d} \mathbf{A}\right) \tag{26}
\end{align*}
$$

The second term is more straightforward to deal with

$$
\begin{equation*}
\operatorname{tr}\left(\overline{\mathbf{U}}^{\top}\left(\mathbf{I}_{m}-\mathbf{U} \mathbf{U}^{\top}\right) \mathrm{d} \mathbf{A V} \mathbf{S}^{-1}\right)=\operatorname{tr}\left(\mathbf{V} \mathbf{S}^{-1} \overline{\mathbf{U}}^{\top}\left(\mathbf{I}_{m}-\mathbf{U U}^{\top}\right) \mathrm{d} \mathbf{A}\right) \tag{27}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\operatorname{tr}\left(\overline{\mathbf{U}}^{\top} \mathrm{d} \mathbf{U}\right)=\operatorname{tr}\left(\mathbf{V}\left[\mathbf{S}\left(\mathbf{F} \circ\left[\mathbf{U}^{\top} \overline{\mathbf{U}}-\overline{\mathbf{U}}^{\top} \mathbf{U}\right]\right) \mathbf{U}^{\top}+\mathbf{S}^{-1} \overline{\mathbf{U}}^{\top}\left(\mathbf{I}_{m}-\mathbf{U}^{\top}\right)\right] \mathrm{d} \mathbf{A}\right) \tag{28}
\end{equation*}
$$

A similar derivation leads to

$$
\begin{equation*}
\operatorname{tr}\left(\overline{\mathbf{V}}^{\top} \mathrm{d} \mathbf{V}\right)=\operatorname{tr}\left(\left[\mathbf{V}\left(\mathbf{F} \circ\left[\mathbf{V}^{\top} \overline{\mathbf{V}}-\overline{\mathbf{V}}^{\top} \mathbf{V}\right]\right) \mathbf{S}+\left(\mathbf{I}_{m}-\mathbf{V} \mathbf{V}^{\top}\right) \overline{\mathbf{V}} \mathbf{S}^{-1}\right] \mathbf{U}^{\top} \mathrm{d} \mathbf{A}\right) \tag{29}
\end{equation*}
$$

Putting all of this together leads to the update equation

$$
\begin{align*}
\overline{\mathbf{A}}= & {\left[\mathbf{U}\left(\mathbf{F} \circ\left[\mathbf{U}^{\top} \overline{\mathbf{U}}-\overline{\mathbf{U}}^{\top} \mathbf{U}\right]\right) \mathbf{S}+\left(\mathbf{I}_{m}-\mathbf{U U}^{\top}\right) \overline{\mathbf{U}} \mathbf{S}^{-1}\right] \mathbf{V}^{\top}+} \tag{30}\\
& \mathbf{U}\left(\mathbf{I}_{k} \circ \overline{\mathbf{S}}\right) \mathbf{V}^{\top}+\mathbf{U}\left[\mathbf{S}\left(\mathbf{F} \circ\left[\mathbf{V}^{\top} \overline{\mathbf{V}}-\overline{\mathbf{V}}^{\top} \mathbf{V}\right]\right) \mathbf{V}^{\top}+\mathbf{S}^{-1} \overline{\mathbf{V}}^{\top}\left(\mathbf{I}_{n}-\mathbf{V} \mathbf{V}^{\top}\right)\right] \tag{31}
\end{align*}
$$

by taking the transposes of the expressions above and noting that the matrices $\mathbf{F} \circ$ $\left[\mathbf{U}^{\top} \overline{\mathbf{U}}-\overline{\mathbf{U}}^{\top} \mathbf{U}\right]$ and $\mathbf{F} \circ\left[\mathbf{V}^{\top} \overline{\mathbf{V}}-\overline{\mathbf{V}}^{\top} \mathbf{V}\right]$ are symmetric.

References

[1] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303-353, 1998.
[2] Thomas P. Minka. Old and new matrix algebra useful for statistics. http://research.microsoft.com/en-us/um/people/minka/papers/matrix/ minka-matrix.pdf.

